KOKKOLA MATERIAL WEEK 2020 Towards a sustainable future

New options for nutrient recovery: Ammonium adsorption and its sequential recovery by air-stripping or membrane technique

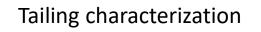
KAMK • University of Applied Sciences

November 2020

tatiana.samarina@kamk.fi esther.takaluoma@kamk.fi

Kiertotalouden uudet prosessit veden ja jäteveden käsittelyssä

Tatiana Samarina, Esther Takaluoma Kajaani University of Applied Sciences, Finland


WaterPro

Laboratory of Applied Geopolymer Technology Kajaani University of Applied Sciences, Finland

Sustainable construction and civil engineering solutions

Tailing pond construction and management


Potential of hazardous waste and tailings encapsulation

Recycling of gangue, bedrock, tailings in concrete production and road construction

https://www.kamk.fi/en/RD-and-Business-Services/Core-Ramp;D-Competences/Industrial-materials-applications

Laboratory of Applied Geopolymer Technology Kajaani University of Applied Sciences, Finland

Environmental and water management in mine industry

Water and waste water treatment applications (toxic metal(oid)s – removal and/or recovery)

Biogas purification techniques

Nurtient recovery approaches

Citizen science and participatory observation

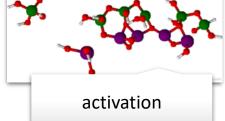
https://www.kamk.fi/en/RD-and-Business-Services/Core-Ramp;D-Competences/Industrial-materials-applications

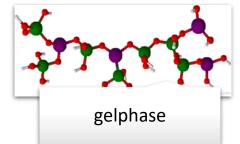
2014-2020

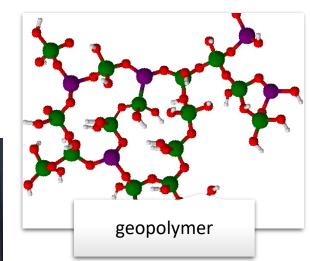
WaterPro

Kiertotalouden uudet prosessit veden ja jäteveden käsittelyssä

European Union European Regional Development Fund


Work package 1	Work package 5			
Industrial by- products/side stream materials characterization	precipitation:	Work package 3		Technical solutions for
		Removal and recovery of contaminants (lab-scale)	Work package 4 Regeneration or stabilization exhausted materials	wastewater treatment and developed materials piloting
Leverage from the EU				


Geopolymer preparation


KAMK • University of Applied Sciences Crashed or powder form

Granulated form

KAMK • University of Applied Sciences

> Waste-to-value concept

Circular Economy and green mining

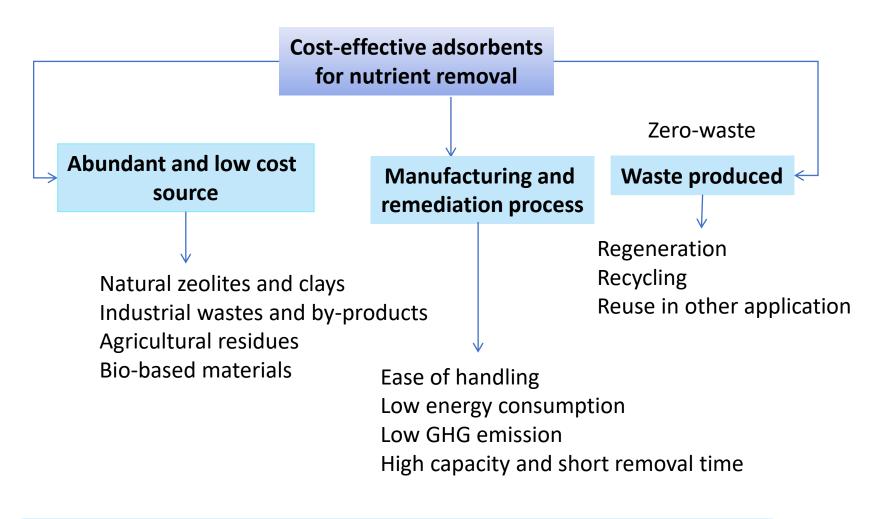
Raw materials for geopolymerization approach

Commercial adsorbents:

Activated carbons (PAC/GAC) 1200-3000 EUR/ton

GHG emission; energy demand; loss of adsorbent on reg.stage; utilization problems

Ion-exchange resins (polymers) 1700-3000 EUR/ton


energy demand; organic solvents; utilization problems

Zeolites (natural minerals) 600-1500 EUR/ton unsteady quality; limit abundances

Sands, gravels, etc. 50-350 EUR/ton low capacity and nonspecific treatment

Geopolymers 150-300 EUR/ton

Design of cost-effective adsorbents

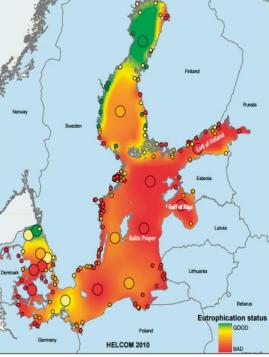
Drivers of nutrient removal and reuse technology

NEED

- Fertilizer production is energy-consuming process
- Discharge of nutrients to natural waters cause eutrophication problems
- Nitrogen load in sewage systems 25 000 ton/a (Finland) and 60% of it is removed and lost in current treatment processes
- Decrease of GHG emission
- Recovery could be valuable in near future
- Environmental limits for nutrients discharge

SOLUTION

- New geopolymer adsorbent from low-cost sources: unique properties and steady quality
- Combination of mature techniques:
 Adsorption → Air-stripping → Absorption
 Evaporation and concentration of final products
 Capture in structure and stabilization


BENEFITS

- Technology for nutrient removal from low-laden or diluted streams: variety of applications
- Decreases expenses for aeration (conventional anaerobic treatment process) or final/polishing treatment
- Small dimensions and ease of integration
- Final product: raw materials, advanced adsorbents, soil improvers or fertilizers

COMPETITION

- Biotreatment AMMONOX (Netherlands) nitrogen removal only
- **RAVITA/NPHarvest** (Finland) reject water and digestate, recovery of ammonium
- **ReNOx** (Austria) natural zeolite adsorbents
- **RemNut** (Italy) ion-exchange resins
- Struvite precipitation nutrient ratio and Mg source

KAMK • University of Applied Sciences

Helsinki Commission Baltic Marine Environment Protection Commission (2010)

Sources of undesired nutrient emission

Nutrient-contaminated streams

Low-laden – 10 – 100 mg N/L

Agriculture, fishery, and forestry

- Run-off and storm waters
- Facultative lagoons
- Air purification cattle farms
- Overfertilized fields
- Aquaculture operations
 - Ditches and peat bogs Nutrient close-loop concept and Environmental risk mitigation

High-laden – 100 – 5000 mg N/L

Municipal and industrial wasteand processing waters

- Sludge digestates
- Dewatering streams of WWTP
- Reject waters of biogas stations
- Landfill leachates
- Textile industry processing waters
- Paper mills grey waters
- Food industry (meat and beverage)

POSSIBLE BUSINESS CASES

Real cases:

wastewater treatment of municipal wastewater and

	ha drainaga			Ν
m	ine drainage			K
				N
20% -	 Run-off SecondEff 	19.6%	Zeomedia - Clinoptilolite	è
16%	14.2%		MKGP - metakaolin-base geopolymer	d
% - % - % - % - % - % - % - % - % - % -	8.5%		FS MKGP - fiber sludge based geopolymer	
4% - 2% - 0% -				

FS MKGP

MKGP

Element	Industrial run-off water, mg/L	Secondary effluent, mg/L		
Na	163	n/d		
Ca	614	27		
Mg	14.2	4.4		
K	130	0.2		
NH ₄ -N	36	31		

Enrichment factor up to 20 were reached for industrial run-off waters, and up to 100 for WWTP effluents

Zeomedia

Removal, %

Fixed bed column experiment: Adsorption and Regeneration

Adsorption:

Grain size Flow rate

Temperature

Operation under arctic condition: Same efficiency at 4°C and 20°C

EBCT was different for synthetic and real waters

Process easy to handle and maintain

Regeneration:

Regenerants:

Na-salts and K-salts

Cloride, sulfate, phosphate

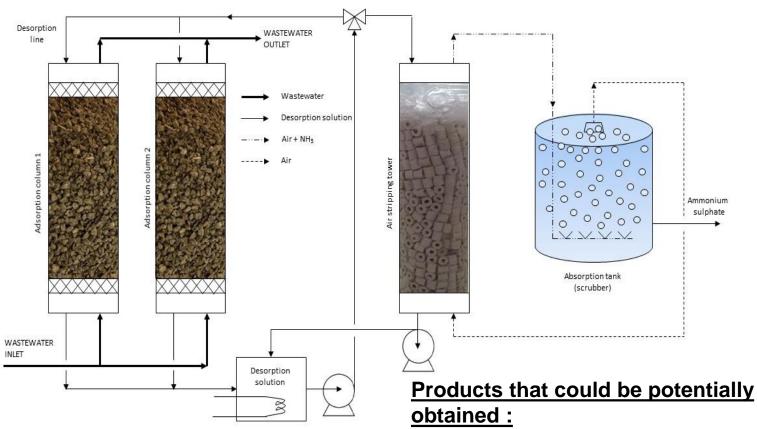
Conditions:

Regenetant concentration

Alkalinity

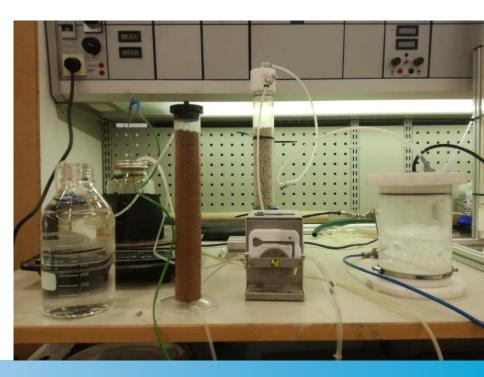
Flow rate

The higher concentration of salt used, the higher enrichment factor

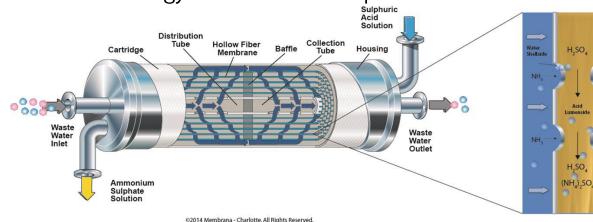

Low-cost regenerant could be used: 5M NaCl at pH 12

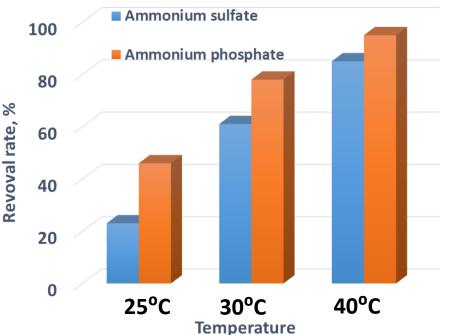
K-salts reduced removal ability of FS MKGP by 55%

Up to 10 cycles of adsorption-regeneration with a decrease in efficiency of only 15%

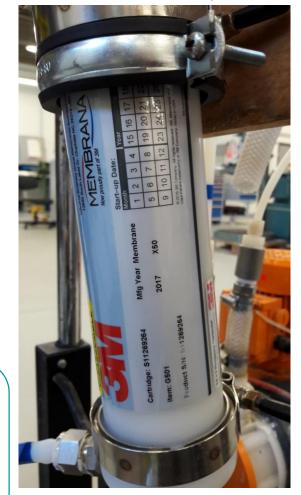

Air-stripping experiments and

ammonium recovery


Ammonia water (5% NH₄OH) Anhydrous ammonia (25% NH₄OH) Liquid ammonium sulfate Temperature 45±5°C was enough to reached conversion rate 91 %.


After the regeneration solution was purified, it was used over 5 times for desorption procedure.

Recovery of ammoniacal nitrogen Transmembrane Chemical Absorption


- 3M Liqui-Cel[®] membrane contactor
- Technology still under development

KAMK • University of Applied Sciences

> The concentration of ammoniumcontent salt in a resulting received phase were 17% and 22% for phosphate and sulfate salt, respectively.

Conclusions:

Leverage from the EU 2014–2020

A74635 EAKR, Keski-Pohjanmaan Liitto/Kainuun Liitto/Pohjois-

20 Pohjanmaan liitto.

European Union European Regional Development Fund

NEXT STEPS

- Decrease substantially CAPEX
- Economical evaluation and LCA
- Construction of piloting mobile treatment unit

Conclusions:

Conventional system is biotreatment in aerobic basins

- Aeration up to 60% of WWTP energy
- Odor and sludge
- Low temperature is a problem
- We <u>not recover N</u>, we have lost it!
- Source of carbon needed (methanol/acetic acid) in polishing step

Innovation approach is <u>RECOVERY</u> of the valuable resource • Smaller footprint • Less GHG emissions

- Better water quality
- Possibility to reduce energy consumption and chemicals
 - Getting valuable products to cover expenses

AMMONNOX - $3 \in / N \text{ kg}$ Conventional air stripping - > $6 \in / N \text{ kg}$ NutriCON (KAMK) - $4.5 \in / N \text{ kg}$ AIM - $1.5-2 \in / N \text{ kg}$

Conclusions:

KAMK • University of Applied Sciences Adsorption has great potential as remediation technique under arctic condition.

• The capacity tests for adsorbent should be repeated with the water being treated. The capacity of the adsorbent granules used in the calculations may be lower than actually used.

- It has now been found in laboratory and pilot experiments that regeneration is possible at least 20 times without significant decrease of capacity even for complex matrices.
- Nitrogen could be recovered as valuable industrial and agricultural products.
- Phosphorous could be removed effectively and potentially recovered locally as soil improver.

KAMK • University of Applied Sciences

www.kamk.fi